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Abstract The transient vaporous and gaseous cavitation phenomena in an elastic pipeline are
westigated for homogeneous liquid-gas wixture flow. It has been shown, in the case of two
components having the same velocity, that modelling is also possible by considering the continuous
character of the medium, i.e. without any location of column separation. The governing equations
have been solved by using two finite difference schemes: the Mac Cormack’s scheme and an improved
new finite difference two-time step scheme. Characteristics method is used at the boundaries. The
theoretical results obtained are compared and found to correlate well with similar results.
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= hydraulic diameter of the pipe
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Introduction

The simulation of transient gas-liquid flows in pipelines has been studied for
several years. This particularly important two-phase flow generally concerns
nuclear, petroleum, gas industries and water distribution networks. When the
pressure in a transient pipeline flow drops below a critical value, some gas
bubbles can be formed. If this value is close to the saturated vapour pressure of
the considered liquid, vapour cavities will appear in some particular points in
the pipe, during subsequent high pressure cycles of the transient.

Column separation and gas release works, as physical phenomena, are
relatively rare. Among these, Kranenburg (1974) and Wiggert and Sundquist
(1979), using respectively a two-time step second order Lax-Wendroff scheme
and an improved characteristics method, have considered the effect of the
released gas on the flow parameters, especially on the dynamic waves. A
significant limitation in each of these studies was the need to make rather
arbitrary assumptions regarding the column separation modelling and the gas
release rate. Baasiri and Thullis (1983) have realised an experimental
quantitative study of gas release during the column separation of a
homogeneous air-water transient flow. Unfortunately, the results obtained
have not been compared with a theoretical model.

Privileging only the numerical aspect of the problem, Chaudry ef al. (1990),
using two explicit finite difference schemes, have resolved the conservation
equation set (mass, momentum and state equations). Nevertheless, the problem
was formulated without taking into account the column separation or any
shocking phenomenon. However, they have showed that the effect of the
dissolved gas on the parameters evolution can be predicted adequately by the
homogeneous model. Recently Hadj-Tayeb et al. (1996), considering an explicit
form of the equations, have studied the case of transient homogeneous flow in
rigid and quasi-rigid pipes. The influence of the initial dissolved gas mass and
the pipe wall elasticity on the pressure wave propagation showed good
agreement.

So, considering the influence of dissolved gas on the pipe wall deformation,
it is more suitable to take into account the gas release and the liquid and wall
elasticity in the equations in order to analyse eventually the interactions
between them. In the present work the calculations consider only the gas
release effect.

More recently, analysing air influence on liquid transients in air pipelines
equipped with valves, the experimental results of Lee (1999) have shown that
when admitted air was completely expelled, a sudden rise of pressure (with a
short column separation) was observed near the valve. These pressure surges
were the result of the rapid valve closure. In the case of a slow valve closure the
pressure amplitude has been considerably reduced.

Similarly, in a study of pressure surge due to rigidity of a pipe walls, coating
and surrounding fill, Stephenson (1997) has shown that the effect of air on pipe
material was a major factor in a water hammer pressures surges. This problem
can generally occur during pipeline testing.



Introduction of vapour cavities in suitable locations generally yields
satisfactory results. Many authors (Kranenburg, 1974; Wiggert and Sundquist,
1979), using this sample technique, have obtained a correct duration of column
separation which agrees with experimental results for horizontal pipes. But
when we face transient cavitation for liquid networks, the choice of cavity
location for each pipe leads to an excessive computational time and a more
complex program. Our formulation permits us to avoid favourably this
difficulty.

Many systems of equations have been considered by several authors where
the number of the unknowns generally equals the number of the equations.
Analysing the two-fluid model (with four equations) and considering the
oscillations frequencies of the bubbles, Kessal (1998) obtained the Wiggert and
Sundquist (1979) model with an application for caviting flow. Reconsidering
this work under a new general form it is proposed, here, to reduce the number
of equations and calculate the three unknowns (pressure, velocity and void
fraction) implicitly.

The purpose of this paper is to complete the mathematical and the physical
formulation of the transient homogeneous gas-liquid flows, i.e that the effect of
the wall elasticity of the pipe and the released gas and especially the column
separation phenomenon, are considered by rewriting all the flow parameters in
function of pressure. The later problem is, here, subject to a particular
attention, by the choice of a new analytical formulation which permits us to
keep the continuity of the medium. The gas release phenomenon is expressed
by a coefficient calculated from the classical laws of diffusion and of
Boussinesq’s hypotheses (1905).

Thus, the following assumptions are made with regard to the flow regime in
which gaseous cavitation is present:

+ The fluid mixture is of a homogeneous, bubbly, two component nature.

« The momentum interchange between the gas and liquid is ignored.
Thus for momentum considerations, the gas bubbles and liquid possess
the same velocity.

« The average cross-sectional representation of void fraction, mixture
velocity, and component densities can be employed.

+ The mass of released gas per unit volume during the transient depends
primarily on the following parameters: the pressure (p) of the liquid, the
vapour pressure (p,), the time (t), saturation pressure p, and the
temperature.

« The energy agitation is neglected.

Mathematical modelling

The mathematical model is based on a one-dimensional approach of the liquid-
vapour-gas mixture flow. Generally speaking, the heat transfer process related
to the cavities is faster in comparison with that of the time scale of pressure
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change. Therefore, the vapour pressure and gas temperature in the cavities can
be assumed to be constant. The momentum of the liquid and of gas + vapour
are replaced by the momentum of the mixture.

Conservation laws

For the homogeneous model, the two components are treated as a mixture
having average flow parameters. Thus mass and momentum equations of each
component are:

0 0
G (Pa €5) + 5 (pa € SV) =TS 1)
0 0
5t (A= €)5) + o (a(l= €)SV) = ~T'gS (2)
%(pa e VS) + a% (pa € VS)+ € S% = —7Dg7g + gpa € Ssinae (3)
0 0 9 o
a(pl(l— €)VS) + % (pl(l— eyv S) +(1- G)S& = —7Din ()
+gp(1— €)Ssina
where:

Pa = pPg + Py

pa Py, prand S are respectively the densities of gas, vapour or liquid and the
cross-sectional area of the pipeline. I', is the rate of gas production per unit
volume of the mixture. It has been calculated from Wiggert and Sundquist
(1979) study, as explained in the Appendix.

The void fraction € is the ratio of the volume of the gas component per
unit volume of the mixture, V is the mean velocity of the mixture. The
subscripts g, 1 and a refer to the gas and liquid and gas + vapour mixture,

respectively.
The friction term for the gas and liquid phases respectively is:
1 1
Ta = éCfapa|V|V and 7 = éCflpl(l— €)|VIV
In this study:

Ta = Tg and Cfa = Cfg

where Cy, p, Dg), 743, and « are respectively the friction coefficient, the mean
pressure, the hydraulic pipe diameter for the two fluids, the wall stress and the
angle of inclination of the pipe.



Summing equations (1) and (2) and neglecting the contribution of the gas
phase, the mixture momentum equation (in place of (3) and (4)) gives:

0 d

5t (PS) 5 (PSV) =0 ()
) 9 .
p (pSV) + g (pSV? + P) = —7D7y + pgSsin (6)

in which p is the mean density of the mixture as:

p=patp(l-e€) (7)
and
P
P= / Sdp, ®)
Po

where py is a reference pressure.
If we introduce the usual equation of state of the wall of the pipeline as:

d_D

where e, E are respectively the pipe wall thickness and the Young’s modulus of
elasticity of the pipe material.
Then integration of the relation (8) with (9) yields:

i So(P — Po)
b= oo (10)
2eE
Taking:
¢=pS, (11)
equations (5) and (6) become:
oc 0 B
ot T ox (CV) =0 (12)
Q@w+9«W+m—_gwl+cD (13)
ot Ox = ToESarT GTLL

Considering a small spherical bubble of radius R filled with vapour and
surrounded by a saturated flowing liquid, and neglecting viscous terms, the
equilibrium condition is:
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20

;" (14)

Pg =D —Dv +
where pg, py and o are the gas and vapor pressures and the interfacial stress o,
respectively.
The equation of state of the gas and the liquid respectively is:

dpg1 _ idp, (15)

Pg,l Kg,l

where K 1s the bulk modulus of elasticity of each component.
Combination of relations (1) and (5) allows us to write (Kessal, 1987):

ldp 1dp, 1lde Iy

pdt pgdt edt  pye

Integration of the above equation with the aid of relations (10) and (11) allows
us to express the parameter ¢ in the following form:

S 1
¢=po—P

2
EO 1 _ PP
\/S_o eEv/rm

where the coefficient G, is function of gas release rate per unit volume of fluid
I'g, whose time evolution may be found in the Appendix.

Gr, (16)

1
G, = - dt (17)
1+ 2%
0
and
p—py 42
e~ 7R
P = 5 (18)
DPo — Pvo + i

In this equation the radius of the bubble is determined by the equilibrium
equation, in which the dynamic effects are neglected. This is justified if only
transient phenomena are considered to have a larger time scale than the natural
period of bubble oscillations.
Considering equations (7) and (15), the void fraction can be expressed as:
c— Plo€XP (Kl_l (p - pO)) . (19)
PloeXp(Kl_l(p - po)) —pv+ (g_z - Pgo)




¢ then equation set (12)-(13)

Introducing a dimensionless form for ¢ as: (* =

becomes: PoSo
¢t 0 ., B
S e =0 (20)
0 . 0 o172 AN : _ Q
a(( V) +&(g V2 +P) = —(*gsinf 2Cth VIV (21)
where:

PoSo

By introducing relation (10) this equation becomes:

, P—Do(, (P—po)Do\ "
Pt (1 .~ ) . (23)

Neglecting the interfacial tension ¢ and introducing some simplifications, we

can finally write:

. P[+EdP -1

- PO EOE D) 20
€, +(1-€))P

where:

€= 5 [1 — (Eol + &)]
Pl

Eo = Eol + %EOS

Eos = 2 E P and Eol =K{'(p — py).

From the above equation the ratio P* can be expressed in function of (*, as:

AV /\12 I e
P = (1_ E;)C. . (1 _ EO/) + \/[(1 —FEo )C - (121—250 )} +4 <, ¢ Eo (25)
and
. (P*=1)Pro
b= 1—(P*—1)Dro (26)

where:
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Eo
Pro = °
Po

and Dro = &EOS.
2e

Considering the relative complexity of the above relations, the terms Eos, Eol,
Eo’, Pro, and Dro have been used in order to facilitate digital computing.

The method of characteristics may be used to transform the equation set (20)
and (21) to an ordinary differential equation set (Courant and Hilbert, 1962).
Then resulting characteristics form (or compatibility equations) is:

6P + ¢*asV = F((*agsind — ZD—CfC’a|V|V)6t. (27)
h

These equations are associated with the following characteristics directions,
respectively:

dx
—=V=+a. 28
- vEe (28)
The differential operator is written as:
6 0 0

where the parameter a is the wave propagation speed in the mixture. It can be
expressed in the following suitable form:

tol—

a= i, (30)
d¢*
dP’
Using equations (20) and (21), the celerity a becomes:
E
—Eos
a= A ~Po —. (3
_ %Eos(P‘ ~1) (Ap +PE))A; — AP (1- €)
e

where:
A =€, +(1- €,)P*
Ay =1+Eo(P*—1)
It can be noticed, from the above equation, that the presence of amounts of free

gas in liquids leads to a very strong influence of pressure on wave speed, which
drops with low pressure and regains its high amplitude as the pressure rises.



Besides, this equation retains pipe elasticity and portrays the effect of gas
content and pressure on acoustic waves.

Numerical resolution

Taking into consideration the conservative form of the equation set (20)-(21),
this paper considers two appropriate finite difference schemes. The first one
concerns a two-time step predictor-corrector scheme for the interior mesh
points: an improved Lax-Friedricks scheme as a predictor and a leapfrog
scheme as a corrector. The first step is obtained by using a stabilising
procedure which corresponds, in fact, to the addition of a dissipate term
proportional to the second derivative (Hirch, 1997). Unfortunately, this scheme
causes considerable damping of the waves, owing to its first-order accuracy.
This would lead to too low values for the maximum pressures. Second order
accuracy can be obtained by adding an adapted second step (leapfrog scheme).
The numerical damping by this two-step scheme is appreciable, provided that a
sufficient number of mesh points is chosen.

It is relatively well established that using the well known family of schemes
Sg for arbitrary « and 3 (Lerat and Peret, 1973) can be recommended for their
numerical resolution of the equation set (20)-(21). For valuesof a =1and 5 =0
we obtain the predictor-corrector Mac Cormack’s scheme (used in this study)
which is generally employed in many problems of gas dynamics. During the
numerical applications of the two previous schemes the characteristics method
is used for the boundary conditions.

Considering that the column separation phenomenon is not only a
hydrodynamics problem but also a phase change problem, it is not necessary to
use the high resolution schemes. In addition, it is now well known, as
was reported by Fletcher (1997), that high-order schemes produce a more
accurate solution than FCT algorithm, but a more sophisticated coding and a
less economical computational time. However, FCT algorithms are more
accurate than artificial viscosity. So, in order to accomplish a suitable treatment
of the shock problem considered herein (abrupt valve closure), an FCT
algorithm is added to the two above predictor-corrector schemes as additional
steps.

Applying the above predictor-corrector schemes to equations (20) and
(21) gives the values of ¢* and V. A computational procedure is employed to
carry out from equations (25), (19) and (Al6) unknowns p, « and G..
The boundary conditions are calculated from the compatibility relations (27)
with a spatial linear interpolation (Lister, 1960). It is important to notice that,
in the case of pipeline networks it is not necessary to compute the cavity
volume for each duct (or column separation). This has been avoided by
introducing the concerned boundary condition as a subroutine in the main
program.

Numerical computations have been facilitated by considering only the finite
difference scheme in the main file (which gives ¢* and V). At the boundaries the
parameters P’ and V are obtained by using the characteristics equations (27).
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Table 1.
Experimental
conditions

Applications
Wiggert and Sundquist (1979) conducted a series of tests with dissolved gas in
water mixer by considering a pipe loop 295m in length and 0.0254m in
diameter. Numerical results were presented for different values of dissolved
gas concentration (Table I). The checked graphs concern the located points
x = 0 and x = 0.5*L of the pipeline. The transients are due to an abrupt closure
of the valve at the upstream boundary of the pipeline (i.e. X = 0).

In our work, six experimental runs were numerically simulated on a digital
computer using our physical model resolved by the two previous finite
difference schemes. In this analysis the following conditions are imposed:

the initial void fraction is very small;

the initial velocity and pressures are calculated from steady-state flow;
the gas behaviour is isothermal; and

the valve closure is instantaneous.

Values of Kr, 8 and Pg in equation (A6) are calculated in the Appendix by
using diffusion laws, aided by Wiggert and Sundquist (1979) gas release mass
estimation.

Column separation and the caviting flow
In previous works, the following cavitation test had to be applied in the point
where the column separation was supposed to be observed:

If p < py then p = py.
Therefore, the cavity volume could be calculated. The technique, generally

employed to calculate this volume W. was based on mixture velocities (Vo, V1)
on either side of the column separation:

W?_At = WE—I—A'[(VZ -Vy)
The calculation procedure ended when W is < 0.

The following technique permits us to avoid the above procedure. In the case
of an abrupt valve closure at the upstream boundary, finite-difference form of

Reservoir Fluid
Initial Gas content®  pressure  temperature
Value location velocity Gas Cy) (Kn/M?) (§©)
Upstream 0.77 Air 0.02 172° 16
Upstream 0.77 CO, 0.60 175P 16
Upstream 0.77 CO, 1.15 175P 16

Notes
@Ratio by volume at standard conditions
Downstream reservoir




one of the equations (27) — corresponding to upstream condition — is used,
where the pressure at X = 0 (p;""2Y) is calculated for a velocity V™4t = 0
(subscript 1 — X = 0). The obtained value of P’ is negative which leads to
negative value of P*. Now, deducing P* from equation (26) yields:

Pl
=——+1.
Pro + P'Dro +

If the obtained value of P* is lower than zero then a condition as:

if P* < 0 then P* = 0 (or equal to a very small value)

can be imposed on X = 0 and on all points i of the mesh.

It can be noticed that, for this value equation (18) gives P = P,, if o is
neglected. Thus, in the valve point (x = 0), the column separation phenomenon
can be obtained numerically without employing the above-mentioned classical
calculation cavity volume.

Figures 1, 3 and 5 show a comparison, as regards the pressure at x = 0,
between Wiggert and Sundquist (1979) experiments and theoretical results
(indicated by W&S in the figures) and the model described herein, assuming
some quantities of initial dissolved gas C,. It can be observed that, at first the
cavity begins to grow and collapses after an outward and return of the wave.
After this collapse, it can also be shown that a shock wave is then generated,
which starts to propagate in the downstream direction.

Gas release has been calculated without assuming an initial number of
bubbles in the mixture (Kranenburg, 1974), but by introducing an initial gas
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Figure 1.
Pressure response at
point x = 0, for C, = 0.02
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concentration C,. The agreement is satisfactory, indicating that MacCormack’s
scheme (MC in the figures) and the Lax-Friedricks-leapfrog scheme (LFL
scheme in the figures) described in the previous section confirm the validity of
our physical model.

In these figures it seems that the gas release in the caviting flow region of the
pipeline causes a considerable decrease of the duration of the subsequent



Pressure (x10°N/m2)

Pressure (x10°N/m2)

15

12

15

12

....... Computed (W & S)
—-- Experimental (W & S)
— .. MC

— L.FL

Vaporous and
gaseous
cavitation

133

Figure 4.

Pressure response at
point x = 0.5 x L, for
C, =06

....... Computed (W & S)
— -~ Experimental (W & S)
—--= M.C

—— L.FL

Figure 5.

Pressure response at
point x = 0, for

C, =115




HFF
11,2

134

Figure 6.

Pressure response at
point x = 0.5 x L, for
C, =115

columns separation and of the pressure. This can be explained by the fact that
the gas release causes the dilation of the fluid column in the caviting flow
region. This region can take place freely due to the pressure drop in the
adjacent cavity. Consequently, the volume of this cavity is less than in the case
without gas and it decreases as C, increases. Thus the cavity collapses at an
earlier instant.

Figures 2, 4 and 6 concern the pressure responses at the midpoint of the
pipeline (X = 0.5*L). It can be noticed that a small, but of short duration cavity
occurs at the beginning. As in the previous figures, the increase of C, causes
appreciable damping of the successive pressure peaks since a greater initial
concentration C, leads to much gas release. Consequently, the volume of the
cavity (or its duration) is smaller since the local pressure grows with gas release.

As can be observed in these figures, there is a good agreement between
theoretical and experimental results for the first pressure peaks, ie the
beginning of the phenomenon. However, during the successive cavity
formations the flow pattern can change. So, it can be noticed that the inclusion
of gas release as a term source in equation (1) has no great influence on the flow
parameters when the dissolved quantity is small; but when this quantity is
larger than a certain value the dynamic parameters are so damped that the
homogeneous model developed herein would require some improvements.

In the numerical plan a comparison between the two finite difference
schemes used shows that MC scheme agrees better with experimental results.
The small differences, observed in Figures 1-6, are certainly due to the fact that
LFL scheme and Wiggert and Sundquist numerical method produce more
dispersion errors.

15
AAAAAAA Computed (W & S)
—-- Experimental (W & S)
29 _.. mc
— LFL
9 -

Pressure (x105N/m?)




Conclusion

A complete homogenous two-phase flow model, with only two equations set, is
performed by considering a dimensionless form of the parameters, by taking
into account the elasticity of the pipe wall, the compressibility of each
component of the mixture and the influence of gas release on the flow
parameters. Vaporous and gaseous cavitation have been studied by resolving
the obtained new equation set with two second order finite-difference schemes.
Computational results, in the case of an abrupt valve closure at the upstream
boundary of the pipeline, are in good agreement with those found in literature
where the located cavity method is used.
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Appendix. Estimation of the gas release coefficient G.(t)
Henry law for gas-liquid mixtures can be written as:

P, = ¢H, (A1)

where Py is the gas saturation pressure of the liquid and ¢ the ratio between the moles number of
dissolved gas and the moles number of the mixture. H is the Henry’s proportionality constant
which depends on the nature of the dissolved gas and the temperature. It can be expressed in the
following simple form (Gaid, 1984):

H = Hyp x 1.02(T710) (A2)

where Hy is the Henry’s proportionality constant at T = 10°C (H; 5.49 x 10" Pa for air in water).
In his work on gas release phenomena, Kranenburg (1974) has defined a concentration Cik as
the number of gas moles n per m® of fluid:

Ck =Py, (A3)

where ~y is a constant given in moles/].
Taking into account the relation (A1) this concentration can be written as:

Ck = ¢ x 1. (Ad)

Wiggert and Sundquist (1979) have defined a concentration Cy as the ratio of the dissolved gas
volume per m® of the mixture. Thus, by considering relation (A3) this concentration, at standard
conditions, takes the following form:

C():%XHXV, (A5)

where v = 224 x 107 m® is the molar volume at standard conditions.
Calculation of the quantity Iy in the relation (17) has been outlined from the Wiggert and

Sundquist (1979) study:
Kr s — s Ps
rg_< B(ps = p), P <p)‘ (46)
0 Ps > P

In this study values of coefficient Kr = 7.6 x 107 1.1 x 10 and 1.1 x 10° S corresponding
respectively to Cy = 0.02, 0.6 and 0.15, as fixed by the previous author, has been retained.
Whereas, the values of 3 and Ps must be calculated in function of temperature.

By taking into account relation (A2), it is possible to express the coefficient 3 (defined by
Wiggert and Sundquist (1974) in function of the molecular mass m of the dissolved gas:

B =vxm. (A7)
Then considering relations (A4) and (Ab) this coefficient becomes:
nxm
8= 0 (A8)

The saturation pressure P can be calculated from the relation (A5).
Example of application for air dissolved in water at T = 16°C:

H=6.18 x 10*Pa; [ =2641x 107 S?/m? P, =1.01 x 10°Pa.

Considering the relations (14) and (18) which give:



pr—Le
Pg,

)

so, from relation (16) we can express the gas density in the following form:

. S1
pg €= (" pg, €o SGo (A9)

where G, is given by the relation (17):

t
T
G, f/ig . A10
eXD( 0 pg€> (A10)

Time evolution of this coefficient permits to write:

t+At r
G (t+At) = Gi(t)exp | — / —£ qdt|. (A11)
t Pe €
After development this coefficient becomes:
I
G (t+At) = Gi(t (17 £ At). Al12
(480 = Gt (1~ (A12)

Replacing the term p € by relation (A9), this equation becomes:

Gu(t+-AL) = Gy (1) (1 _ ergﬁoiogoq(t)). (A13)

By taking into account the relations (14 ) and (18) the fluid pressure becomes:

p =Dpv +P*(po — Dv,); (A14)
replacing the ratio 55—0, in the relation (A13), by an equation deduced from the pressure cross
sectional variation (Kessal, 1987), S = S(P*):

So _
2=

D -1
{1 +="Eos (P — 1) (A15)

and the quantity I, from relation (A6), then the relation (A13) can take the final following form:
[1 -2 Eos(P* — 1)A] }
¢ ’

Ge(t+A) = Gr(t){l — (K — KoP*)Ge (1) (A16)

where the coefficients K; and Ky are functions of pg, p, p, and pyo:

KFB(pS — p) and K2 :KF(po - pvo) )

Pg, %o Pg, 0

K; =

Vaporous and
gaseous
cavitation
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